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Abstract
The dynamics of a Bose–Einstein condensate under the influence of a confining
double-well potential and a periodic potential (optical lattice) is studied by
the well-known variational method. The variational principle leads to coupled
nonlinear differential equations for the amplitude (width), chirp, center position
and the center frequency of the condensate. The interplay between the
condensate parameters leads to various regimes of its time evolution which
depend on the relative strengths of the double-well and the periodic potentials.
In particular, we show that by adjusting the strengths of the applied potentials
appropriately, one can control and manipulate the condensate in several ways
including tunneling from one well to the other and the to-and-fro motion
between the two wells.

PACS numbers: 82.40, 03.75.Fi, 03.65.Ge, 03.75.Kk

(Some figures in this article are in colour only in the electronic version)

Introduction

After the experimental realization of Bose–Einstein condensates (BEC), macroscopic
manifestation of a large number of quantum phenomena could be studied, using various
confining potential configurations, which would not have been possible otherwise. Along
with other interesting physical phenomena, the possibility of tunneling of atoms between the
traps containing two Bose–Einstein condensates was predicted [1]. At present, the means
by which one can control and manipulate a condensate is a central issue in the study of
BEC matter waves. In this context, the system of coupled BECs in a double-well trap [1–9]
is very promising. The phenomenon of coherent quantum tunneling between two Bose–
Einstein condensates, confined in a double-well magnetic trap, was theoretically studied by
several authors and its similarity with the well-known Josephson effect in superconductors was
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established [2–4]. The possibility of the experimental observation of bosonic Josephson-type
oscillations and the nonlinear self-trapping of the condensate, in such a system, were also
discussed [5, 7] and predicted. The phenomenon was subsequently observed experimentally
[8, 9].

The Josephson-type behavior of a Bose–Einstein condensate has also been studied in a
quasi-one-dimensional optical lattice [10–16] which acts as a source of an additional force on
the condensate which can be controlled externally. These studies showed that, in addition to
the Josephson-type oscillations, such a system exhibits observable resonances and multimode
behavior which could be used in tailoring matter waves and trapping and manipulating BECs.
Hence, an optical lattice, superposed on a trapping potential, not only allows one to study
various interesting phenomena, such as interference and diffraction of matter waves [17, 18],
quantum logic [19], formation of Mott structures in optical lattices [20, 21] etc, it also provides
a tool for controlling and manipulating BECs [22, 23].

Recently, Berry and Kutz [24] have studied the dynamical behavior of a BEC under the
influence of both the harmonic and periodic external potentials. Besides giving an insight
into the dynamics originating from the interaction of various physical characteristics of the
condensate (such as the amplitude, chirp, center position and the center frequency), their work
showed the possibility of controlling and manipulating BECs with the help of an optical lattice
superimposed on a harmonic trapping potential.

In the given work, following Berry and Kutz, we study the dynamics of a BEC in
a double-well potential, supplemented by an optical lattice, variationally. We show that the
interplay between the physical characteristics of the condensate leads to various regimes of time
evolution that depend on the relative strengths of the double-well and the periodic potentials.
In particular, we show that by adjusting the strengths of the applied potentials appropriately,
one can control and manipulate the condensate in several ways including tunneling from
one well to the other and the to-and-fro motion between the two wells. We also show that
the condensate can be controlled, so that it remains in a desired well of the double-well
potential.

The model

We consider a one-dimensional dilute BEC in a double well confining potential and an optical
lattice. Such a system is described by the following dimensionless Gross–Pitaevski (GP)
equation:

iψt(x, t) + 1
2ψxx(x, t) + α|ψ(x, t)|2ψ(x, t) − V (x)ψ(x, t) = 0, (1)

where ψ(x, t) is the complex-valued macroscopic wavefunction of the condensate in the
mean-field approximation, t is the dimensionless time, x is the dimensionless distance, and
the subscripts t and x stand for the corresponding partial derivatives with respect t and x,
respectively. Here, α is a dimensionless coefficient (see equation (3)). Note that α = +1
corresponds to an attractive, while α = −1 corresponds to a repulsive condensate. The
potential V (x)

V (x) = V1(x
2 − λ2)2 + V0 sin2[ω(x − x̄)] (2)

consists of two parts: the first term, V1(x
2−λ2)2, represents the confining double-well potential

while the second part, V0 sin2[ω(x − x̄)], gives the optical lattice. The non-dimensionalization
has been done as follows. The condensate wavefunction ψ is normalized to

√
N0 (N0 being the

total number of atoms in the condensate), the distance x is measured in the units of
√

h̄/mω⊥,
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where m is the mass of the condensate atom and ω⊥ is the transverse confining frequency.
Further, we have

α = −g/(h̄N0ω⊥), (3)

where g is the self-interaction coefficient of the condensate, and ω is the frequency of the
periodic potential. λ is a dimensionless constant that determines the minima of the double-well
potential. The parameters ± x̄ determine the offset of a minimum of the periodic potential
with respect to the corresponding minimum of the double-well potential. Note that when

x̄ = nπ

ω
, (4)

where n is an integer, a minimum of the periodic potential coincides with the corresponding
minimum of the double-well potential. The quantities V0 and V1 (measured in the units of
h̄ω⊥) give the relative strengths of the periodic and the double-well potentials, respectively.
Note that if we take the experimental values of the frequencies involved in the magnetic trap
of the MIT experiment [2] (νx = 745 Hz, νy = 235 Hz, and νz = 410 Hz), then one unit of
the dimensionless distance x corresponds to approximately 0.964 μm in real units.

This paper is organized as follows. We start with the study of a single condensate in a
double-well potential and show how one can manipulate the condensate between the two wells
by changing the initial conditions as well as other parameters of the condensate. Here, we also
determine the condition under which the condensate can tunnel through the barrier from one
well to the other. Next, we perturb the double-well potential by an optical lattice (sinusoidal
potential) and study the condensate dynamics in the perturbed potential. We show how the
optical lattice leads to a richer set of possibilities for manipulating the condensate at will by
varying the relative strength of the double-well and the sinusoidal potentials.

The variational analysis

In the given section, we present the variational treatment of the problem which is based on
the work of Berry and Kutz [24]. The Gross–Pitaevskii equation can be derived from the
variational principle

δ

∫ t2

t1

dt L = δ

∫ t2

t1

dt

∫ +∞

−∞
dx L((ψ,ψ∗, dψ/dt, dψ∗/dt) = 0, (5)

with the Lagrangian density

L = i

(
∂ψ∗

∂t
ψ − ψ∗ ∂ψ

∂t

)
+

1

2

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

− α|ψ |4 + 2V (x)|ψ |2, (6)

where the asterix stands for complex conjugation. The governing equation (1) results from
δL/δψ∗ = 0. For further analysis, we choose the following Gaussian ansatz

ψ = A
√

η exp[−η2(x − x0)
2 + iβ(x − x0)

2 + iξ(x − x0) + iφ], (7)

where η, β, ξ, φ and x0 vary with time and measure the amplitude, chirp, center frequency,
the absolute phase and the center position, respectively. The constant A determines the total
number of atoms in the condensate.

Condensate in a double-well potential

Here, we consider the dynamics of a BEC in a double-well trapping potential, described by

V (x) = V1(x
2 − λ2)2. (8)

3
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For an attractive condensate (α = +1), using the above ansatz, we compute the reduced
Lagrangian L̃:

L̃ =
√

π

2
A2

[
1

2η2

dβ

dt
+ 2

dφ

dt
− 2ξ

dx0

dt
+ (η4 + β2)

1

η2
+ ξ 2

]

+
√

2πA2V1

{
3x2

0

2η2
− λ2

2η2
+

(
x2

0 − λ2
)

+
3

16η4

}
− A4

2
η
√

π. (9)

Applying the Euler–Lagrange equation for each of the parameters η, β, ξ, φ and x0, we arrive
at the following system of ordinary differential equations for the condensate parameters:

dη

dt
= −2βη, (10)

dx0

dt
= ξ, (11)

dβ

dt
= 2V1

(
λ2 − 3

4η2
− 3x2

0

)
+ 2(η4 − β2) − A2

√
2

2
η3, (12)

dξ

dt
= 4V1x0

(
λ2 − x2

0

) − 3V1x0

η2
. (13)

The above system of nonlinear ordinary differential equations governs the interaction between
various parameters of the condensate. Note that, due to the phase invariance of equation (1)
[24], the absolute phase φ(t) does not appear in the above system and hence is irrelevant for
the condensate dynamics.

The fixed points of the above system are determined by the set of parameters η0, β0, ξ0

and x0 = X0. Here, β0 = ξ0 = 0, and η0 and X0 are obtained from the solutions of the
following system of algebraic equations:

dβ

dt
= 2V1

(
λ2 − 3

4η2
− 3x2

0

)
+ 2η4 − A2

√
2

2
η3 (14)

4V1x0
(
λ2 − x2

0

) − 3V1x0

η2
= 0. (15)

Linear stability analysis of the fixed points

As usual, we look for small deviations from the fixed point and put

η = η0 + η̃, β = 0 + β̃, x0 = X0 + x̃, ξ = 0 + ξ̃ , (16)

where η̃, β̃, x̃ and ξ̃ are small deviations from the respective steady state values. Inserting these
into the system of equations (10)–(13), we obtain the following set of differential equations
governing the time evolution of the perturbations

dx̃

dt
= ξ̃ , (17)

dξ̃

dt
= x̃

(
−12X2

0V1 + 4λ2V1 − 3V1

η2
0

)
+ η̃

6X0V1

η3
0

, (18)

dη̃

dt
= −2η0β̃, (19)

4
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dβ̃

dt
= x̃(−12X0V1) + η̃

(
8η3

0 − 3
√

2A2η2
0

2
+

3V1

η3
0

)
. (20)

The above set of equations can be written in the following matrix form:
dY

dt
= MY, (21)

where M is a 4 × 4 square matrix,

M =

⎛
⎜⎜⎜⎜⎝

0 1 0 0
−12X2

0V1 + 4λ2V1 − 3V1

η2
0

0 6X0V1

η3
0

0

0 0 0 −2η0

−12X0V1 0 8η3
0 − 3

√
2A2η2

0
2 + 3V1

η3
0

0

⎞
⎟⎟⎟⎟⎠ , (22)

and Y is a column vector

Y =

⎛
⎜⎜⎝

x̃

ξ̃

η̃

β̃

⎞
⎟⎟⎠ . (23)

The solutions of this matrix equation can be written as

Y (t) = eEntYn, (24)

where En are the eigenvalues of the matrix M and Yn are the corresponding eigenvectors. The
stability of the fixed points depends upon the eigenvalues En. If any of the eigenvalues of M
has a real part greater than zero, then the fixed points are unstable. The eigenvalues of M are
given by

E1,2 = ±
(

A′

2
+

BD

2
− 1

2

√
(A′2 − 2A′BD − B2D2 + 4BCE)

)1/2

, (25)

E3,4 = ±
(

A′

2
+

BD

2
+

1

2

√
(A′2 − 2A′BD − B2D2 + 4BCE)

)1/2

, (26)

where

A′ = −12X2
0V1 + 4λ2V1 − 3V1

η2
0

, (27)

B = −2η0, (28)

C = −12X0V1, (29)

D = 8η3
0 − 3

√
2A2η2

0

2
+

3V1

η3
0

, (30)

E = 6X0V1

η3
0

. (31)

With the above eigenvalues of the matrix M, we get that, if the expression inside the radical is
positive, the fixed points are stable only if X2

0 < λ2, X2
0 �= 0. The condition for the positivity

of the quantity under the square root yields

η0 =
√

3

4
(
λ2 − X2

0

) , (32)
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V1 =
9 − 10.392A2

√(
λ2 − X2

0

)
32X2

0

(
λ2 − X2

0

)2 . (33)

Further, for a given value of ω, the positivity of η0 and V1 leads to a restriction on the allowed
values of λ for the fixed points to be stable. In our case of ω = 0.1, λ can vary only in
the range approximately from 2.5 to 3.5. Therefore, in our numerical calculations, we have
taken λ = 3.0 as an example. It corresponds to the minima of the double-well potential at
±2.89 μm. The above set of conditions allows us to study different regimes of condensate
dynamics by varying one or more parameters out of the set η0, X0, λ and A.

Numerical results and discussions

In this section we present some typical and interesting results for a condensate in a double-well
potential alone. For this purpose, we numerically solve the system of equations (17)–(20) for
different (three) values of the initial peak position of the condensate relative to the right well
of the double-well potential, and show that the evolution of the condensate depends on the
initial location of its peak.

After fixing the value of the parameter λ, we take up a typical case of A = 0.5 (which
corresponds to 2.5×105 atoms in the condensate) and determine the fixed points of the system
for a set of values of X0, which determines the initial peak position of the condensate relative to
the right minimum of the double-well potential, situated at λ = +3. The table below contains
the values of the relevant parameters for this case.

As we see, for X0 = 0.1 (which means that the center position of the condensate is
initially far away from the minimum of the right well), three fixed points, corresponding to the
eigenvalues E1 = 1.8599i, E2 = −1.8599i and E4 = −1.2435 of the matrix M, are stable.
The fixed point corresponding to E3 = +1.2435 is unstable. Further, as we push the center
position of the condensate toward the minimum of the right well (X0 = 2.1 and 2.9), all four
fixed points become stable.

Case 1. This corresponds to X0 = 0.1. The time evolution of the condensate parameters
is shown in figure 1(a). As we see, the center position of the condensate oscillates between
−0.1 and +0.1 which is clear from the three-dimensional representation of the condensate
dynamics (in η, β and X0) shown in figure 1(b). The amplitude of the condensate, η, and
the chirp parameter, β, are periodic functions of time and are phase locked in the sense that
they oscillate synchronously with a constant phase difference of π/2. This becomes evident
from the fact that the projection of the phase space dynamics on the η–β plane [24], depicted
in figure 1(c), is a circle. Further, it is clear from the 3d-plot of |ψ |2, shown in figure 1(d),
that the condensate remains confined during its evolution in the right well of the double-well
potential (the well in which it is initially placed).

Case 2. Here, X0 = 2.1, i.e., the peak of the condensate is now nearer to the minimum of
the right well. The time evolution of the condensate parameters for this case is shown in
figure 2(a). The amplitude, η, the chirp, β, and the center position x0 have larger periods of
oscillations compared to case 1. Unlike case 1, where the condensate remains confined in
the well in which it is initially placed, here the condensate, as it evolves, undergoes tunneling
from the right well into the left. In figure 2(b), where we have the three-dimensional plot of
|ψ |2, shows such a tunneling.

Case 3. Here X0 = 2.9 and it corresponds to the case when the center position of the
condensate almost coincides with the minimum of the right well. In figure 3 we have the

6
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Figure 1. (a) Time evolution of the amplitude η, chirp β, center position X0 and the frequency
parameter ξ of the condensate, for A = 0.5, ω = 0.1, λ = 3 and X0 = 0.10, with the initial
conditions η0 = 0.2880 and V1 = 0.0468, corresponding to case 1 given in table 1. (b) Three-
dimensional representation of the condensate dynamics in (η, β, X0) corresponding to the time
evolution of the condensate parameters shown in figure 1(a). (c) The projection of the phase-space
dynamics of the condensate (figure 1(b)) on the η − β plane. (d) Three-dimensional plot of |ψ |2
with the initial conditions of case 1 given in table 1. The condensate is initially placed in the right
well of the double-well potential with peak at X0 = 0.1.
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Figure 1. (Continued.)
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Figure 2. (a) The time evolution of the condensate parameters, for A = 0.5, ω = 0.1 and λ = 3,
with the initial conditions X0 = 2.1, η0 = 0.4042 and V1 = 0.0012, corresponding to case 2 as
given in table 1. (b) Three-dimensional plot of |ψ |2, for A = 0.5, ω = 0.1 and λ = 3, with the
initial conditions X0 = 2.1, η0 = 0.4042 and V1 = 0.0012, corresponding to case 2 as given in
table 1.
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Figure 3. Three-dimensional plot of |ψ |2, for A = 0.5, ω = 0.1 and λ = 3, with the initial
conditions X0 = 2.9, η0 = 1.1275 and V1 = 0.0748, corresponding to case 3 as given in table 1.

three-dimensional plot of |ψ |2, which shows that the condensate gets trapped in the right well
and evolves in time without any significant change in its initial profile.

Thus, depending on the initial location in a given well of the double-well potential,
the condensate can remain either trapped into the same well or tunnel into the neighboring
well.

Condensate in a double-well potential perturbed by an optical lattice

Consider the evolution of a BEC under the combined influence of a double-well and a periodic
potential given by equation (2). The reduced Lagrangian for this case is

L̃ = A2

√
π

2

[
1

2η2

dβ

dt
+ 2

dφ

dt
− 2ξ

dx0

dt
+ (η4 + β2)

1

η2
+ ξ 2

]

+
√

2πA2V1

{
3x2

0

2η2
− λ2

2η2
+

(
x2

0 − λ2) +
3

16η4

}

+ A2

√
π

2
V0

(
1 − e(−ω2/2η2)

)
cos[2ω(x̄ − x0)] − A4

2
η
√

π. (34)

Following Berry and Kutz [24], we assume that the width of the condensate is much smaller
than the width of the crest of the periodic potential, i.e., ω/η � 1, so that e(−ω2/2η2) ∼ 1.
Under this assumption, we obtain the following set of reduced equations of motion:

dη

dt
= −2βη, (35)

dx0

dt
= ξ, (36)

10
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Table 1.

Parameters X0 η0 V1 Eigenvalues: 1, 2 Eigenvalues: 3, 4

Case 1 0.1 0.2880 0.0468 ±1.8599 i ±1.2435
Case 2 2.1 0.4042 0.0012 ±0.6425 i ±0.0594 i
Case 3 2.9 1.1275 0.0748 ±4.9955 i ±2.1933 i

dβ

dt
= 2V1

(
λ2 − 3

4η2
− 3x2

0

)
+ 2(η4 − β2) − A

√
2

2
η3 − V0ω

2 cos[2ω(x̄ − x0)], (37)

dξ

dt
= 4V1x0

(
λ2 − x2

0

) − 3V1x0

η2
+ V0ω sin[2ω(x̄ − x0)]. (38)

The fixed points of the above system of equations are given by η = η0, β = 0, x0 = X0 and
ξ = 0, where η0 is determined from the equation

η4 +
A√

2
η3 − V0ω

4x0
(2ωx0 cos θ + sin θ) − 2V1x

2
0 = 0, (39)

where θ ≡ 2ω(x̄ − x0). Since we want x0 ≡ X0 to be a free parameter in the sense that
it gives us the freedom to place the initial BEC at a desired position in the well, the above
equation can be solved for η, for a given A and the ratio (V0/V1). The real and positive
roots of this equation will determine the steady state value of the condensate amplitude, η0,
for a fixed center position and a given relative strength of the periodic potential with respect
to the double-well potential. In order to study the dynamics of this system as a function of
the relative strength of the periodic and double-well potentials, we solve equation (39) for
X0 = 0.1, 2.1 and 2.9 and the values of V1, given in table 1. The solution shows that only one
root is real and positive and gives the required η0.

Having determined the fixed points, (η0, 0, X0, 0), of the system of equations (35)–(38),
we solved this system numerically for various values of the ratio (V0/V1) but with the same
initial conditions corresponding to the new fixed points.

The three-dimensional plots of |ψ |2, when the condensate is initially placed with its peak
at X0 = 0.1, are shown in figures 4(a) and (b) for (V0/V1) = 100 and 1000, respectively.
We see that as time goes on the condensate hops between the original fixed point with the
center position at X0 = 0.1 and the newly generated fixed point with the center position at
X0 = −0.1. This results in a breathing dynamics of the condensate with a sequential narrowing
and broadening of the intensity profile. The intensity with larger peak value corresponds to a
greater confinement of the condensate near the newly generated fixed point which happens to
be closer to the minimum of the double-well potential. The breathing dynamics is consistent
with the results of the linear stability analysis.

The three-dimensional plots of |ψ |2, for X0 = 2.1, are shown in figures 5(a)–(c) for
(V0/V1) = 100, 1000 and 5000, respectively. The dynamics here changes and a new feature
emerges: the condensate starts tunneling back and forth between the two wells of the double-
well potential. As the relative strength of the periodic potential is increased, the period of
this tunneling oscillations decreases. The nature of dynamics for the third initial conditions
with X0 = 2.9 remains the same except that this period coupling between the wells decreases
further. A typical result is shown in figure 6.
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Figure 4. (a) The 3D plot of |ψ |2 showing the breathing time evolution of the condensate in the
double-well potential perturbed by a periodic potential for V0/V1 = 100 and the initial position
of the peak at X0 = 0.1. (b) The 3D plot of |ψ |2 showing the breathing time evolution of the
condensate in the double-well potential perturbed by a periodic potential for V0/V1 = 1000 and
the initial position of the peak at X0 = 0.1.
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Figure 5. (a) The 3D plot of |ψ |2 showing periodic coupling of the condensate between the wells
of the double-well potential for V0/V1 = 100 and the initial position of the peak at X0 = 2.1.
(b) The 3D plot of |ψ |2 showing periodic coupling of the condensate between the wells of the
double-well potential for V0/V1 = 1000 and the initial position of the peak at X0 = 2.1. (c) The
3D plot of |ψ |2 showing periodic coupling of the condensate between the wells of the double-well
potential for V0/V1 = 5000 and the initial position of the peak at X0 = 2.1.
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Figure 5. (Continued.)
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Figure 6. The 3D plot of |ψ |2 showing periodic coupling, with shorter period, of the condensate
between the wells of the double-well potential for V0/V1 = 5000 and the initial position of the
peak at X0 = 2.9.
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Figure 7. The 3D plot of |ψ |2 corresponding to the time evolution of the condensate between the
wells of the double-well potential with the initial conditions η0 = 0.4042, β = 0, ξ = 0, X0 = 2.1
and V1 = 0.0012, for V0/V1 = 1000. The dynamics corresponds to the manipulation regime, as
explained in the text.

Manipulating the BEC

We have seen earlier that, depending on the initial conditions, the BEC either remains confined
in a given well or tunnels back and forth between the wells and that the period of tunneling
oscillations depends on the relative strength of the periodic potential with respect to the double-
well potential. This gives us an opportunity to control and manipulate the BEC the way we
want. In what follows, we show how one can do this effectively by choosing the initial location
of the BEC and varying the relative strength of the trapping potential. The idea here is similar
to the one used in [24] for calculating a specific periodic potential for trapping the condensate
in one of the fixed points.

In figure 7 we have the plot of |ψ |2 for the case when initially the condensate is placed
with its peak at X0 = 2.1, V1 = 0.0012 and the ratio V0/V1 = 1000. After a time interval
of 20 units, when the condensate tunnels into the left well, the periodic potential is switched
off and the strength of the double-well potential is increased to 0.0115, which corresponds to
shifting of the minima of the double-well potential from λ = 3 to λ = 2.5. The subsequent
time evolution shows that the condensate remains in the left well after tunneling. Further, we
let the condensate evolve for another 30 units of time and then switch on the periodic potential
with a larger relative strength, V0/V1 = 5000, and restore the strength of the periodic potential
back to 0.0012 (this is equivalent to restoring the minima of the double-well potential back to
λ = 3). We then let the condensate evolve in time. As we can see in figure 7, in its subsequent
evolution the condensate starts tunneling back and forth between the wells of the double-well
potential with a lesser period. Here, we would like to mention that, although our study is
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Figure 8. The time evolution of the condensate parameters η, β, X0 and ξ during the manipulation
regime with the initial conditions η0 = 0.4042, β = 0, ξ = 0, X0 = 2.1 and V1 = 0.0012, for
V0/V1 = 1000.

different from what is carried out in [25], the decrease in the period of oscillation between
the wells may be similar to the fast Josephson and Rabi oscillations due to the excitation of
quasiparticles, observed in [25]. After a time interval of 30 units, when the condensate is in
the right well, we switch off the periodic potential and increase the strength of the double-well
potential to 0.0115. The condensate now gets trapped in the right well and remains in it
during its further evolution. In figure 8, we have presented the plots of the parameters of
the condensate as a function of time during the manipulating process. Thus, we see that by
suplementing the double-well potential with a periodic potential we can control and manipulate
a BEC effectively.

Conclusions

In the given work we have carried out a variational analysis of the time evolution of a Bose–
Einstein condensate in a double-well potential which is perturbed by a periodic potential
(optical lattice). We have shown that the presence of optical lattice leads to a variety of
possibilities for controlling and manipulating a BEC. For instance, depending on the relative
strength of the periodic potential with respect to the double-well potential, new steady states
are generated with varied degrees of confinement. We have also shown that by switching the
optical lattice on and off and by adjusting the minima of the double-well potential appropriately,
we can trap the BEC in a given well for any desired interval of time, make it tunnel
through to the other well at will, or let it oscillate between the well with a desired period of
oscillation.
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